ieNSFHDR
‘A3D3

Shih-Chieh Hsu = L\_A_/JV v/

University of Washington

FastML Workshop ICCAD C %3
' N OV 2 2023 https://a3d3.ai/



https://fastmachinelearning.org/iccad2023/program.html
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NSF HDR Institute: Accelerated Artificial Intelligence

Algorithms for Data-Driven Discovery

< Scientific /Science Computing

Pipelines

Applications Hardware

A3D3

Domain ML-specific
inspired-ML systems
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(since 2021)

Our mission:

To enable real-time Al techniques for
scientific and engineering discovery by
uniting three core components: Scientific
Applications, Artificial Intelligence
Algorithms, and Computing Hardware

Our vision:

To make real-time Al accessible to the
scientific and engineering community in
order to accelerate discovery.



Harnessing the Data Revolution

e A national-scale initiative to enable

new modes of data-driven discovery

addressing fundamental questions in
science & engineering
e Three parallel tracks:

@)

(@)

(@)

Institutes (5 awards, $75M)

m A3D3 <

= |-GUIDE GO B
m iHARP .

m Imageonics iHARP

m D4

ldeas Labs + Frameworks (28, $53M)

TRIPODS (28, $42M) & DSC (19, $25M)

e v (Y Gevorvee

ENGINEERING TO
SYSTEMS PHENOTYPE

DATA-
INTENSIVE NOVEL

S&E CATALYSIS
i) DESIGN

ECOSYSTEM

FORECASTING

EDUCATION
&
WORKFORCE

DSC

MATERIALS MESSENGER

ASTROPHYSICS

GENOME



Multi-disciplinary multi-institution

Spread across 16 institutions ’ - "l‘ | ‘
globally and 106 members ' e NP e ADA N
(70% students + postdocs). X .‘ ——
- ‘”Ofllnl Noqu&ou
sl dac
ICCAD FastML organizers [ [atokm ,' o Wi e
associated to A3D3 == =
e Nhan Tran (EAB) of - R
e Mia Liu " Veging
e Javier Duarte vl
ETH . -




Next generation of big data challenge

e The broader use of AI/ML in industry
and academia is fueling rapid
innovation in hardware accelerators.

e High Energy Physics at the LHC
driving technology frontier
o Both data size and streaming rates

exceed those handled by industry
leaders.

A3D3 institute
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. FPGA/ASIC
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Common challenge cross disciplinary

_ A3D3 institute I I |
e Multi-messenger Astrophysics B 1ol FPomasic vy P 1
facilities rapidly increasing detection «“gfww_ c® |
rates due to transformative network 8 -
growth 'éwls_ LHOHLT |
. . . o 200Q01e u
e Neuroscience entering massive data & 10} .
analysis and interpretation thanks to ol |
. LHC L1T ' puNE
neural recordings at scale
10°8 ZTF i
Neuro° Lae
i IceCube @ Netflix 4K UHD—

| 1 | 1
10 10 10* 102 10° 102  10*  10°
Latency requirement [s]



Four focus areas
supported by core
expertise for
sustainability.

Targeted

Heterog
eneous

Science/
NeuroAl

Two Integrated
systems to
facilitate
integration and
deployment.



Targeted system for low latency/power

his4ml: an open-source package enabling FPGAs & ASICs deployment of
ML/AI algorithms

A3D3 members are core contributors and maintainers of package, as well as

building a community of users

m  AMD (FINN), TinyML, Imperial College London, University of Toronto, University of Zurich,
CERN, FNAL, ..., etc.

Keras
TensorFlow
PyTorch

wor | =N hls[4 ml [

\ Compressed
model —~— HLS
conversion HLS
b project
ASIC flow

Machine learning model
optimization, compression Jf

Tune configuration
latency, throughput,
Wer, resource usa


https://github.com/fastmachinelearning/hls4ml

Heterogeneous system for high throughput

ML as-a-Service enabling users in sync with the most up-to-date Al model, and

the inference server handling job execution in heterogeneous computing system.
o A3D3 develops workflow platforms (SONIC, hermes) using standard industry tools
and collaborates with IT Cloud providers & HPCs to evaluate performance

Model E

f

o

Model A
Model B

?
3 e
3 -
o °
o (]
m >
3
134 13
83 a3

NVIDIA.
kubernetes rriton INFERENCE sERVER

-

.

Azure

GRAFHCORE

~

/ Microsoft aWS

™ Google Cloud Platform

ﬁ O

P SDSC

/

IT Cloud Providers

High Performance Computing o


https://github.com/sonic-net/SONiC
https://github.com/ML4GW/hermes

Hardware-Algorithm Co-design (HAC)

Co-design, Design Automation

Algorithm ¢ > Hardware

- his 4 ml

Challenges in Algorithm Design:  Challenges in Deployment in Hardware:

* Irregular data (graphs, point * Computation efficiency issues
clouds) (e.g. see Caroline Johnson’s talk)

* Label scarsity * Power/memory constraints

* Al models are hard to be * Hard to be implemented on FPGA/ASIC
interpreted

. ... --> hardware design automation tools .



HAC: Innovative appli

cation

e New algorithms and hardware being prototyped with computational benchmark

dataset and applied to domain

science.

o A3Da3 researchers proactively seeks synergy cross different data

= |

Self-driving cars

-

AR/VR glasses
)
A
LiDAR
iPhone13Pro 3D Object Detection (Waymo)
3D Sensors Real-World Perception Tasks

Torchsparse/ Torchsparse++ (Haotian Tang, et al

Torchsparse

. @ MLSys’22)

SPVCNN++ (Ours) Groundtruth

Calorimeter at LHC

Credit: Z. Liu
SPVCNN++ (Zhijian Liu et al . + HEP team)
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HAC: ML Algorithms development

e GSAT & LRI (Sigi Miao, et al., @ ICML22, ICLR’23)

How to build interpretable and generalizable graph/geometric learning models?

J [& Protein
‘4" Ligand
I -
W

4
pileup ’/Z\I‘r
\ 4

) Unbranched
y Alkane

A good model
y > _ should capture
B /7 Q A ‘pg Binding the truly effective
£ ;\T S E s data patterns
Carbonyl
(a) ActsTrack (b) Tau3mu (c) SynMol (d) PLBind

Theoretically grounded by the principle of information bottleneck

Outperform baselines with a 10% improvement in detection accuracy of effective patterns and a
3% improvement in out-of-distribution generalization prediction accuracy

12
Credit: Pan Li



Design Automation

e ScaleHLS / ScaleHLS 2.0 (Hanchen Ye, et al.)

. .. Structure IR ; Data IR E Payload IR E Control IR Passes
o generate highly-efficient ; ; :

Fylorch Tls:rljg : Tensor : : Arch. [:I Our Functional Dialects
hardware accelerators for F D | o |12 | et [ our Strcturel Disect
scientific algorithms | resoe | oyget |- e BN e

. . Lowering | r ! _: | D )
without much design effort . —_—— e £l D SN e Tk

Optimized e st E e E l E l (T Our Structural Tools

Mw_ s[)tatacftlowl i letj::!m i Primitive i [::2:: ‘; ? (") Existing Tools

Input/ Front-end/ - -

Output Back-end ScaleFlow Holistic IR ScaleFlow Optimizer

e PyLog + HLS4AML (Tim zhang, et al.)
Hand-tune
d
. Template
0 Integration of PyLog and
. ops Customized Final
H LS4M I— enableS SIgnIflcant ML model —¥ e —>{ Hls4ml IR Yo! HLS code > model in
. i parser HLS
code reduction in e L
. DSE
FPGA-oriented ML model
PylLog PyLog Pyl 13
development Compilation [—>  IR& [ YT» "Y08 > HLS code
o Codegen
Workflow Optimizer




High Energy Physics (HEP)

his 4 ml

40MHz collision rate

A ~1B detector channels FPGA filter stack
~us latency
o R Pb/s
] - \ i A

10s Gb/s ‘
&5 kV ”/ ‘
10s Tb/s Worldwide

100s kHz computing grid
Exabyte-scale

On-detector
ASIC compression
~100ns latency

>
>

datasets
On-prem FPU/GPU
ML in 3 tiers of data filter farm Heterogeneous
. ~100 ms latency )
processing computing

Credit M. Liu

CMS Experiment Targeted systems

14



Graph Neural Network for tracking

e Algorithms making tracking
highly parallelizable both
low latency FPGA version

and GPU version
o Front. Big Data 5 (2022)

M . 4 Training

o 2306.11330 ({Jﬂ oo |

e Can be used at various his /4 'ml_
tiers of track reconstruction o.,\ P _,
_ N

o ExaTrkX as a service 7 =i po—

CTD2023 o,/ /e \ o
& XILINX.

15


https://arxiv.org/abs/2112.02048
https://arxiv.org/abs/2112.02048
https://arxiv.org/abs/2306.11330
https://indico.cern.ch/event/1252748/contributions/5617861/attachments/2730948/4747652/CTD%202023%20Flash%20Talk%20ExaTrkX%20as%20a%20Service.pdf

Heterogeneous computing as-a-service (SONIC)

Significant progress in integration of SONIC in CMS for minAOD production

~

Sites with directly connected GPUs
GPU nodes excluded from SONIC server

Directed to directly connected GPU
nodes

local host as SONIC server with GPU acceleration

~
Sites with CPU only nodes offloading
local host as SONIC server without GPU @
acceleration i,

CMS SONIC workflows

CMS global pool Directed to sites without load
balanced SONIC service

J

Directed to Purdue Tier 2 data
center where SONIC service
available via Kubernetes

SONIC GPU servers managed by Kubernetes

Purdue Tier 2 data center
CMS SONIC workflows

S
P NVIDIA
TRITON INFERENCE SERVER
at Purdue Tier 2 data center launch on demand

CHEP 2023 2 e LT

’ == at Commercial clouds or HPC sites &

Results

ERPC

Talk at fast ml workshop

e

/ /

, ; £) WACCESS [

1 7z

N -7 16

-

Fall back to local CPU


https://indico.jlab.org/event/459/contributions/11816/
https://indico.cern.ch/event/1156222/contributions/5062792/attachments/2521165/4335134/October_3_FastML_SONIC.pdf

Multi-messenger Astrophysics

- Develop and deploy software within astronomical facilities to enable discovery

Compact Binaries

Kilonovae

( Remnant
o

Dynamical ejecta

Stellar Collapse P
Gamma-ray

Bursts

- e

Credit: Michael Coughlin (UMN) 17



Gravitational Waves (LVK)

Github: ML4GW

All algorithms use our_inference-as-a-service (laaS) prototype to implement a real-time noise
subtraction pipeline (DeepClean), detection (aframe/GWAK), and parameter
estimation for use during the fourth observing run (O4) of LIGO-Virgo-KAGRA on dedicated

hardware at the detector sites.

Detect the GWs:
Clean the Data: DeepClean (CNN) aframe (CNN)/GWAK

(autoencoders)

. side bands due to coupling
with other technical noise

Background Survival Function

Detection Statistic

Characterize the GWs: (MAF*)

N=84, p-value=0.0011

18


https://www.nature.com/articles/s41550-022-01651-w
https://github.com/ML4GW/

Neuroscience needs high-throughput & real-time Al

Rapid increase in number,
type of measurements

Need: data-driven discovery of
relevant features, structure in data

Must perturb the system to
disentangle causality, treat
disorders.

Spike

') detector

N

Delay

>

Stimulator

/\

q N
Behavior ( rec;

Amplifiers
+ filters

(<1ms)

Current
source

Need: low-latency algorithms




Improved time-series reconstruction methods

Developed new Multi-block Recurrent Auto-Encoder (MRAE) to increase bandwidth

more efficiently

Developed Spatio-Temporal Transformer for Spiking Neural Data

Low Frequencies

Nolan, Pesaran, Shlizerman & Orsborn,

bioarxiv 2022
Le & Shlizerman, NeurlPS 2022

High Frequencies

AE Block 1

o \M AL AN n\m
E"'a '.:‘::t"/\“"\'% Xy 9 X; T

E' vy yvv - E

8. A 5

S W\ 5\m
200 ms 200 ms

AE Block 2

@
Channels

AE Block N

m-—-mmmx
—; B

I Q

Ly

@
v

Channels

200 ms

200 ms
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NeuroAl Integration

e A popular autoencoder model

D in
used on neural data (LFADS) in Sensory Alecof:h &
FPGA, Elham Khoda'’s talk Systems gorithm

action control
signal
e Neuro A3D3 develops methods for Actuator

reconstruction, forecasting and .
clustering of time-series
e Potential applications/uses: WMM WMWWMWM
o Detect noise and artifacts o—_ == ==
o Detect rare neural events of Not a
interest (e.g., seizures, spindles,
etc)

spindle spindle splndle Not a
spindle spindle



Fast Machine Learning Community

. ] . @ 1014F = T | T | T T ]
Our aim is to build a Iarge-scgle @ [T cHe<gsensor FastML Science
public scheme to advertise this g ey,  (Work in Progress)

© (0]
work 1072 fo,”. 7
o) s
— A?D3 Institute g’ o Guantin
g SGAASIC . 10"FLHC + L El : \ T —

%1019 FPGAASI( T P g e et }_F|USIOn A 7] L

g ° g == LHC trigger DUNE

g 10 ] n DUNE on-detector T4D TEM o

° SRR 8| )

210‘5 CPUW/GPU 10 HEDM

£ LHC HLT (BraggNN) :

9 1

®» 10" = Quench detection™

; 10°|- MLPerf Tiny (IC) &
P
10° 3 104 e .
i LIGO 2 MLPerf Mobile (NLP)
euro, Sl
107 ° “ =
IceCube @) Netflix 4K UHD N
L L ] l 2 | | | | | | )
10°% 10% 10* 107 Liaotoency'gquire'r%‘ent [;]o“ 1q0-9 107 10-5 10-3 10-1 107 103 105

Reference latency [s] 22



Partnership and FastML Ecosystem

Growing strong industry connections with

Partner Projects

support through the Fast ML community

National & Int’| Laboratories
National Laboratory
H BERKELEY LAB

Coprocessors

FAIRAHEP F‘P

anan @lxi
A Al

SNV jy OzGrowv
+ Many more...—~”

ICECUBE

NEUTRINO OBSERVATORY

$ATLAS

EXPERIMENT

EUTRINO EXPES \%ng -
RG o
KAGR} KITT PEAK

IT Cloud Providers High Performance Computing

>

NVIDIA.
GRAFPHCORE s habanad’

SambaNova

{5 Fermilab
Argonne &
\‘:0 Los Alamos

< Brookhaven @
NATIONAL LABORATORY)

AMDZU | 77 XILINX @\

\@erebras UNTETHER A)I

[/A IXl;crosoft aWS\ [ SDSC N sz\
) Google Cloud Platform

» CrusoeCloud
Vgl ..
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https://fastmachinelearning.org/

A3D3 Ecosystem & Engagement

High-Throughput Al
Methods and
Infrastructure Workshop

Postbaccalaureate

Workshop

Real-time and accelerated ML
for fundamental sciences

Imperial College
London
25-28 September 2023

Scientific Committee

Thea Arrestad (ETH Zurich)

Javier Duarte (UCSD)

Phil Harris (MIT)

Burt Holzman (Fermilab)

Scoft Hauck (U. Washington)

Shih-Chieh Hsu (U. Washington)

Sergo Jindariani (Fermilab)

Mia Liv (Purdue University)

Allison McCarn Deiana (Southern Methodist University)
Mark Neubauer (U. lllinois Urbana-Champaign)
Jennifer Ngadiuba (Fermilab)

Maurizio Pierini (CERN)

Sioni Summers (CERN)

Alex Tapper (Imperial College)

Nhan Tran (Fermilab)

iy

Organising Committee
Sunita Aubeeluck
Robert Bainbridge

David Colling ERE
Patrick Dunne e

Wayne Luk %

Andrew Rose : 0]

Sioni Summers (co-chair)

orpe bl indi.to/fastm|23

loannis Xiofidis fastmachinelearning.org

https://indico.cern.ch/event/1283970 24



https://indico.cern.ch/event/1282754/
https://indico.cern.ch/event/1282754/
https://indico.cern.ch/event/1282754/
https://indico.cern.ch/event/1253923/
https://indico.cern.ch/event/1253923/
https://indico.cern.ch/event/1283970/overview

Summary

A3D3 focusing on accelerating real-time Al to solve common

challenges through interdisciplinary collaboration

o 4 focus areas: HAC, HEP, MMA, Neuros
o 2 integrated systems: Targeted system, Hetereogenous computing

A3D3 is closely connected with the FastML Community

o Leverage our leadership in FastML to connect to main different domains
o Touches on many fields in industry/science not part of A3D3 scope
m Plasma Physics/Materials Science/.../ASIC design
Welcome to participate in A3D3 activities
o HDR Ecosystem Workshops
o Postbac Program Enhancements

o Machine Learning Challenges
m  Nov 17 planning meeting hitps://indico.cern.ch/event/1342015/

25


https://indico.cern.ch/event/1342015/

Shih-Chieh Hsu
http://faculty.washington.edu/schsu/
schsu@uw.edu

26


http://faculty.washington.edu/schsu/
mailto:schsu@uw.edu

Cross-discipline

N
HEP

Hsu
Pl

MMA

Coughlin
co-PI

Neuros a
‘Ii‘ ‘

Orsborn

Harris Neubauer Liu
co-PI co-PI

Scholberg Graham Hanson
co-Pl

Shlizerman Dadarlat Makin

Katsavounidis

17 Senior Personal
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A3D3 fully staffed

106 Members (including 5 affiliate)

Prog. Ope. Spec. Affiliate faculty/staff

-

Professor
5.7%
Assoc. Prof

2.8%

N Assist. Prof
9.4%

0.9%
Undergraduate

Master

Scientist
6.6%

Engineer/Specialist
1.9%
Postbacc

74% trainee

Postdoc
10.4%

PhD
35.8%

PostBacc fellow

-

A
w
;

\ | . > 1N S =
Zhang (UW) Rankin ~ Sravan Ju L Carlson Gray  Peterson Lian  Skivington
(Upenn) (Drexel) (LBNL) (NYCU)(Westmont) (UMN) (UW) (Duke)  (UCSD)
A3D3 Alumni  A3D3 Alumni

28



ML Challenge: Unifying across domains

e challenge across HDR domains

o Try to find anomalies over many different datasets with one metric

Would be a FAIR workflow challenge?

Could extend this to semi/self-supervised learning

(foundation models)

Many Datasets covering whole HDR

Decoder

O
O
Q*—P‘
O

Reconstructed

Encoder

Input

“Bottleneck”
hidden layer

Anomaly Algo‘rithm

Reconstructed

Original
Input

Input
Dot product the input and output

Small Value : Anomaly

Anomaly Metric

29




Optical Astronomy - Overview B

Simulate Observations: NMMA (emulator) Github work areas:

S — : NMMA SCOPE Pythia
i ——
V ~~~~~~~~~ — | Optimize Observations: Pythia (RL)
e —— ST T T e anaom agent ~4 faculty, 3 postdocs, 5 grad
1 ----------------------------------------- } a2l | = students, 3 postbac/undergradua
—_— il
1 e ) j Classify the sources: Scope (CNN)
f—— LE
T e °% 200 400 600 800 1000

episodes

Main focus: Deploy ML algorithms throughout the
observation preparation and follow-up for source

identification and characterization
0 50 100 150 200


https://github.com/nuclear-multimessenger-astronomy/nmma
https://github.com/ZwickyTransientFacility/scope
https://github.com/niharika-sravan/Pythia

Neutrinos - Overview
PMT Voltage Picking (CNN)

— Waveform 1.0
= Pulse Locations
140 = NN Output
Lawson Hanson Output
0.8
130 4
v
- 0.6 c
>
E 2
o
g‘ 120 l.s)
2 Lo.a 2
&
110 1
r0.2
”“TWL" I
ok ] 0.0
0 100 200 300 400
Time (ns)

Main focus: Porting existing algorithms to GPUs and
FPGAs for the purpose of detection and localization

reconstruction.
See: See Pan’s Talk in Hardware-Algorithm Co-Development

- Accelerated Al
Algorithms f
Data-Dri
Discover y

~2 faculty, 2 postdocs, 2 grad
students, 2 postbac/undergraduates

Supernova Reconstruction
(1DCNN autoencoder + pointing)

clean sig. +peak amplitude: 4 --- snr: 0.09

5

0

-5
input

-10 —— truth
—— pred_np_5_13

] 25 50 75 100 125 150 175 200

clean sig. +peak amplitude: 24 --- snr: 1.33

input
20 —— truth
—— pred_base_AE




LOW LATENCY EDGE CLASSIFICATION GNN

Shi-Yu Huang, Yun-Chen Yanq, Yu-Ru Si, et. al. FPL 2023

Modularized parallel architecture for each
computational pipelines

Index =

I, ]
Edge ©ij %
Feature

Q2|
Node Xj» Xj
Feature

:@—E Q5
xV

Edge ~ | Node Edge | | Output
block [122T1o2HAgaregate oz o, block | |~ Edge

e'i,j g
= [

> Q5

Qn | : FIFO Depth=n

Achieving 2.07 us Latency with 3.225 Throughput (MGPS)

Xilinx Virtex UltraScale+ VU9P HLS 2019.2

edge o, idx ij updated edge e';;
—{E 1— |
P 1—

ij| | Node
> Feature -

BRAM
e,;,'
v ted
pdated edgeey, = featurea,
[T >
................ ..: P
— EdgeReg —
[~ Index Reg
v ' !
™ Aggregrated e ;—
Feature -
, BRAM
€jv
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https://drive.google.com/file/d/11ssZ1PjgnCMn1qIB4fw35bjDOVtaUVQH/view

National Lab: HLS4ML for Analog Al

e Project: “Democratizing Al Hardware with an Open Source, Automated Al-Chip

Design Toolkit”

e Joint initiative with Discovery Partners Institute and Fermilab

@z/@ ' k

DISCOVERY PARTNERS INSTITUTE

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
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Farah Fahim Ben Parpillon Amit R. Trivedi Nhan Tran
Fermi Lab, Fermi Lab, UIC, Fermi Lab,
ASIC Research & Senior ASIC Electrical and Accelerator-based

Development Head Engineer Computer Engineering  Experiments

AI-Chip Prototyping and Analog High-Level Synthesis and
Primitive Automation Digital Automation Flow

Ahmet Cetin Mark Neubauer
UIC, UIUC,
Electrical and High Energy
Computer Engineering Physics

Application Studies: Low Barrier
Custom-Al for Small Businesses

Why Analog Al?
More efficient, Better Latency, Less Area

Why Automate Analog Al?

Cheaper, faster, less risky implementation

L)
DOMAIN SPECIFIC COMPILER o ﬂ — 5
= -
Vivado HLS - v
i ol FPGAs &
Model Training b
¥ [ Keras «J» [N NN
PYTORCH
Model Design Model Pruning ey ( m \ [E—
< : hls.ml
@ @ H Siemens Catapult HLS
v HLS Conversion Cadence Stratus HLS

EXTENSION OBJECTIVE TO ANALOG Al IMPLEMENTATION

Analog HLS???



https://dpi.uillinois.edu/

Industry: Real-time Blood Cell Id

34245

Diagram from: ieee paper

e Collaboration between MIT, CERN and Phiab
o Led/initiated by Vladimir Loncar

e Working to bring HLS4ML to cell identification
o  Working directly with industry to deploy
o Builds on A3D3 Al initiatives

Collaboration with https

://[phiab.com/

Key Ideas
o Real time tagging

o Can be used for cell therapy

m Cancers/....
o Non-invasive

of blood cells

m No chemicals
m All electronics based

Original holography info

Segmented cell instances

[
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https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9321210
https://phiab.com/

